
An Improved Demosaicing Algorithm
Alexey Lukin, Denis Kubasov

Faculty of Applied Mathematics and Computer Science,
State University of Moscow, Russia

{ lukin, dkubasov } @graphics.cs.msu.su

In this paper, we present a new algorithm for the demosaicing of
digital images, i.e. for the interpolation of bayer patterns. A re-
view of existing demosaicing algorithms is made, and a new high-
quality algorithm is proposed featuring significant improvements
to interpolation with respect to visual quality and PSNR. The
algorithm introduces several improvements upon
a well known Kimmel method: more complex interpolation of the
green component, adaptive control of the number of iterations,
and projection on initial data.
Keywords: bayer pattern, mosaic, demosaicing, demosaicking,
interpolation, Kimmel method, NEDI.

1. INTRODUCTION
Most modern digital photo and video cameras use a mosaic ar-
rangement of photo-sensitive elements. This enables using only
one matrix of photo-sensors instead of 3 matrices (one for each
basic color component). In such a matrix, the elements sensitive
to different basic colors are interleaved. They form a mosaic
which is called the bayer pattern (fig. 1).

Fig 1. Bayer pattern

Thus, each element of the matrix stores the information on only
one of 3 color components, whereas the output “full-color” digital
image should contain all 3 basic components (R,G, B) for each
pixel.
The problem of demosaicing involves the interpolation of color
data to produce the "full-colored" image from the bayer pattern.
The demosaicing algorithm interpolates each of color planes at
the positions where the corresponding values are missing (fig. 2).

Fig 2. Interpolation of color planes

2. REVIEW OF EXISTING METHODS

2.1 Linear methods
2.1.1 Independent interpolation of color planes
The simplest method of demosaicing just interpolates each color
plane independently using some kind of interpolation algorithm
(e.g. bilinear or bicubic interpolation), fig. 3. This is the fastest
method, but it has the lowest quality.

1) Green:
 G5=(G2+G4+G6+G8)/4

2) Red:
 R2=(R1+R3)/2
 R4=(R1+ R7)/2
 R5=(R1+R3+R7+R9)/4

3) Blue:
 Similarly to red

Fig 3. Bilinear interpolation of a pixel in position 5

a b

c d

Fig 4. Original image (a), bayer pattern (b), bilinear
interpolation (c), and the proposed method (d)

One of the common artifacts – a color moiré (fig. 4-c) – is present
in all demosaicing methods. It results from different space posi-

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

tions of different color sensors. Many demosaicing methods em-
ploy the fact that there are twice as many green pixels as red or
blue pixels, in order to restore the high-frequency information of
the image better. After that, the restored green component is used
to interpolate red and blue components.

2.1.2 Color ratios interpolation
Interpolation of red and blue colors using the green color is based
on some assumptions about correlation of color planes. One of
possible assumptions states that ratios of basic color components
(e.g. red/green or blue/green) remain equal within objects of the
image [2]. Then, once we have interpolated the green compo-
nents, we can interpolate ratios of red (or blue) to green (fig. 5)
instead of interpolating red (or blue) colors on their own. This
produces better results, compared to independent color plane in-
terpolation, because the green component of a bayer pattern has
higher sampling frequency and hence can be restored more accu-
rately (even using a linear method). For interpolation of color
ratios linear or other methods can be used.
The weak point of this algorithm is the image areas where the
green color component is low. In these areas, the color ratios
grow large and become sensitive to the noise. This problem can
be addressed by interpolation of logarithms of the ratios (i.e. color
differences) instead of ratios themselves.

Fig 5. Color ratios interpolation

2.2 Adaptive methods
Adaptive methods switch different types of interpolation filters on
a pixel-to-pixel basis depending on some heuristic or mathemati-
cal models of the local image area around the current pixel.
2.2.1 Edge-adaptive methods
The resulting quality of color ratios (or differences) interpolation
heavily depends on quality of initial interpolation of the green
component. It is desirable to improve the quality of interpolation
of green color by replacing linear interpolation with edge-
directional interpolation.
The simplest edge-directional interpolation algorithm calculates
vertical and horizontal gradients using neighbors of the interpo-
lated pixel [1] and assumes that the direction of the edge near this
pixel is corresponding to the direction of a smaller gradient. After
this, the interpolated pixel value is calculated as average of two
pixel values in the direction of the edge (fig. 6).

1) Horizontal gradient: H=|G2-G4|
2) Vertical gradient: V=|G1-G5|
3) If H>V

 G3=(G1+G5)/2
Else If V>H
 G3=(G2+G4)/2
Else
 G3=(G1+G2+G4+G5)/4

Fig 6. Edge-directional interpolation. G1, G2, G4, G5 – given
green pixels, G3 – interpolated green pixel.

This method can be improved by calculating gradients in a wider
window around the current pixel, and by using other color com-
ponents for estimation of the gradient [2].
After the green color component has been interpolated, the red
and green components can be interpolated using color ratios algo-
rithm.

2.2.2 Kimmel algorithm
A Kimmel demosaicing algorithm [3] includes 3 stages:

1. Interpolation of a green color.
2. Interpolation of red and blue colors using the interpo-

lated green color.
3. Correction stage.

Let's describe each stage in details.
2.2.2.1 Interpolation of green color
The missing green pixel is calculated as a linear combination of 4
nearest neighbors of this pixel (the values of these neighbors are
known). The weights Ei in the linear combination are calculated
from probability that pixel Gi belongs to the same image object as
pixel G5 (fig. 7).

8642

88664422
5 EEEE

GEGEGEGE
G

+++
+++

=

Ei – weight function

Fig 7. Green color interpolation in Kimmel algorithm

The weights Ei are calculated as follows. Firstly, the concept of
directional derivatives for 4 directions (vertical, horizontal, and 2
diagonals) from each point is introduced. Let's calculate the de-

rivatives in the point P5 (we use "P" notation in-
stead of “R”, “G”, and “B”, to show that calcula-
tion of derivatives doesn't depend on a particular
color component given in the point P5). The de-
rivatives are calculated as:

2
)(64

5
PP

PDx
−

= ,

2
)(82

5
PP

PDy
−

= ,

22
)(73

5
PP

PDxd
−

= ,

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

22

)(91
5

PP
PDyd

−
= ,

where Pi is the intensity value in the corresponding point of the
mosaic. It should be noted that whichever component is given in a
point P5, the derivatives are always calculated between intensities
of the same color.
If P5 stores the green value, then the derivatives can be calculated
more accurately as:







 −−

=
2

,
2

max)(5753
5

PPPP
PDxd

,







 −−

=
2

,
2

max)(5951
5

PPPP
PDyd

Then the weighting function can be calculated as:

)()(1
1

2
5

2
i

i
PDPD

E
++

= ,

where D(Pi) are the directional derivatives in P5 – Pi direction. For
example: E3 = (1 + Dxd(P5)2 + Dxd(P3)2)-1/2.

2.2.2.2 Interpolation of red and blue colors using the
green color
For interpolation of red and blue colors the previously described
color ratios interpolation algorithm is used. The ratios are interpo-
lated similarly to green pixels on the previous stage using the
weights Еi defined earlier (fig. 8).

9731

9

9
9

7

7
7

3

3
3

1

1
1

55 EEEE
G
R

E
G
R

E
G
R

E
G
RE

GR
+++

+++
=

Ei – weight function

Fig 8. Red color interpolation in Kimmel algorithm
The formula for interpolation of blue color is quite similar.

2.2.2.3 Correction stage
Correction is a critical stage to the overall algorithm, because it
suppresses most artifacts, such as color moiré. The main idea of
correction is as follows. During the interpolation of red (or blue)
color we assumed that the ratio of red (or blue) to green is con-
stant within each image object. This means that the ratio of green
to red (or blue) should also be constant in this area. Therefore,
after the interpolation of red and blue colors we can correct green
pixels so that this requirement is met. But such correction will
alter the original ratios of red (or blue) to green, so they have to
be corrected again. Authors of [3] suggest repeating these steps 3
times, adjusting the green and red/blue color planes alternatively.
So, the correction stage works as follows:
Repeat 3 times:

• Correct green pixels according to the green/red and
green/blue ratios:

8642

8

8
8

6

6
6

4

4
4

2

2
2

55 EEEE
B
G

E
B
G

E
B
GE

B
GE

BG B

+++

+++
= ,

8642

8

8
8

6

6
6

4

4
4

2

2
2

55 EEEE
R
G

E
R
G

E
R
GE

R
GE

RG R

+++

+++
= ,

2
55

5

BR GG
G

+
=

• Correct red and blue pixels according to the red/green
and blue/green ratios:

5,55 ≠=
∑

∑
i

E
G
B

E
GB

i

i

i
i

, 5,55 ≠=
∑

∑
i

E
G
R

E
GR

i

i

i
i

• End of loop.

2.3 Mathematical methods
2.3.1 Optimal recovery
For high-quality interpolation of green color (which significantly
influences the overall quality) some advanced image interpolation
methods can be used, such as NEDI [7] or optimal recovery [5],
which is an extension of NEDI.
Authors of [5] suggest replacing the edge-directional interpolation
of green color in Kimmel algorithm by optimal recovery interpo-
lation, and interpolation of color ratios – by interpolation of color
differences.
The idea of optimal recovery is to extend the well known NEDI
method by imposing some additional constraints on resulting
values of pixels. This produces better results than NEDI does,
because additional constraints allow suppressing the artifacts.

2.3.2 Alternating Projections
The method of alternating projections [6] belongs to a class of so
called POCS (Projections on Convex Surfaces) methods. The
main idea is iterative improvement of some initial approximation
of the resulting image. The improvement is performed using ad-
justment of image to alternatively meet 2 classes of constraints
("projection of the image on constraint sets").
The first set of constraints requires that pixels of the interpolated
image do not violate the original (given) mosaic data. In other
words, the color components in the positions where they were
specified by the mosaic shouldn't change.
The second set of constraints results from the assumption that the
local high-frequency information (details) in all the color planes is
similar. In the simplest case, we can require that details of all 3
color components in the surrounding of each pixel are strictly
equal (this can be satisfied by copying of their high-frequency
wavelet coefficients). In the method [6] it is assumed that high-
frequency wavelet coefficients of red and blue colors should not
differ more than by some predefined threshold from the coeffi-
cients of green color. If the color planes in the locality of the cur-
rent pixel are close, then the threshold can be set low. If the sig-
nificant difference between color planes is possible (or is admit-

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

ted), then the threshold can be set higher. For grayscale images
the threshold can be set to 0.
So, the outline of the algorithm is as follows:

• The initial interpolation of color planes using one of the ex-
isting methods (e.g. edge-adaptive interpolation of color dif-
ferences).

• Repeat several times (or until converged):
o Take the wavelet transform of all the color planes.
o Change the high-frequency wavelet coefficients of red

and blue colors so that they differ from coefficients of
the green color not more than by a specified threshold.

o Take the inverse wavelet transform.
o Substitute the color components given in the original

bayer pattern.

• End of loop.

2.4 Algorithm quality evaluation
A widely used metric for evaluation of bayer pattern interpolation
quality is PSNR – Peak Signal to Noise Ratio. For PSNR calcula-
tion the original full-color image is artificially mosaiced (by
throwing out 2 of 3 color components for each pixel) and then –
demosaiced and compared with the original image using PSNR
measure. There are different metrics for evaluation of difference
between two images. For example, the color differences can be
evaluated using perceptually uniform color spaces (e.g. ∆E00 [9])
or models of a human vision system. In this work, we will use a
standard PSNR measure and ∆E00 measure, alongside with a sub-
jective visual evaluation of image quality.
The most common artifacts of the interpolated images include:
color moiré, zipper effect, loss of sharpness, and jagged edges
[11].

3. THE PROPOSED ALGORITHM
The most common artifacts of the interpolated images include:
color moiré, zipper effect, loss of sharpness, and jagged edges
[11].
Our algorithm includes the following stages:

1. A high-quality interpolation of green color using gradient
interpolation and NEDI algorithms.

2. Modified Kimmel method with adaptively varied number
of iterations.

3. Projection on source image data.
4. Iteration of the whole algorithm using the interpolated im-

age.
Let's review each of these stages in details.

3.1 Green color interpolation
In our method of green color interpolation, we determine the di-
rection and weights of interpolation only using green component,
without reference to red or blue components. This choice is justi-
fied by the fact that red and blue components have lower sam-
pling rate in a bayer pattern, and lower resolution can cause alias-
ing, which can result in a wrong selection of direction of the in-
terpolation.

3.1.1 NEDI
The NEDI method for edge-directional interpolation has been
proposed in [7] and advanced in [8] and [5]. NEDI features high-
quality interpolation of edges without jagged edges artifact. How-
ever NEDI has several disadvantages as well: high computational
complexity, watercolor artifacts in areas of fine texture, singular-
ity of the algorithm in smooth image areas [10]. That is why we
propose to hybridize NEDI with simpler edge-directional interpo-
lation methods so that the artifacts of both methods are reduced.
In our method, we use a modification of NEDI proposed in [8]
(smoothing of the lightness map, spatial aperture extension). Also,
for improvement of stability of the algorithm in smooth image
areas, we use the dithering of the lightness map with a white noise
of small amplitude. This improves the stability of a matrix inver-
sion operation involved in a calculation of interpolation weights
in NEDI.

3.1.2 Gradient interpolation
A simpler interpolation method used in our algorithm is a gradient
interpolation. In a basic method of gradient interpolation, we se-
lect between horizontal and vertical interpolation directions. The
selection is based on a comparison of vertical and horizontal gra-
dients of the green color component. The direction of lower abso-
lute gradient is selected for interpolation (fig. 9).

1) Calculation of horizontal and vertical
gradients H and V

2) If H≥V
 G3=(G2+G8)/2
Else
 G3=(G4+G6)/2

Fig 9. Simple gradient interpolation of a green color
Each of the gradients is averaged within some area around the
current pixel. On a first step, the horizontal gradient H is averaged
within a small area:

D[i, j] = |G[i, j] – G[i, j+2]|

H = D[i, j–1] + D[i–1, j–2] + D[i+1, j–2] + D[i–1, j] + D[i+1, j] +
D[i, j–3] + D[i, j+1] + D[i–2, j–1] + D[i+2, j–1] + (D[i, j–5] + D[i,

j+3] + D[i–2, j–3] + D[i+2, j–3] + D[i–2, j+1] + D[i+2, j+1] +
D[i–1, j–4] + D[i+1, j–4] + D[i–1, j+2] + D[i+1, j+2]) / 2

Here D[] is the absolute difference between two horizontally
adjacent pixels.
Then the horizontal and vertical gradients are compared. If their
values are relatively different, the direction of the interpolation is
selected according to the lower gradient. On the other hand, if
their values are relatively close, we decide that the direction of the
interpolation is not well determined, and in this case the gradients
are evaluated in a wider area (window):

If |H – V| < β · (H + V) then Use bigger window
Totally, 3 different window sizes are used. The small window,
according to the formula above, is approximately 4x4 pixels. The
medium window is 10x10 pixels. The larger window is approxi-
mately 22x22 pixels. After selection of the interpolation direction,
the interpolation is performed using averaging of 2 adjacent pixels
in the direction of the interpolation (fig. 9).
In a more complex modification of our method, the weights of the
interpolation are calculated according to the formula on a fig. 10.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

Denis
Àáçàö ïîâòîðÿåòñÿ…

1))(1 8
82 VEE +== ε

2))(1 8
64 HEE +== ε

3) G3 is calculated as on fig. 7.

Fig 10. Gradient interpolation of a green color
A high power of gradients in the denominator minimizes the mix-
ing of vertical and horizontal interpolation directions, yet allows
such mixing in a case of very close values of the gradients. This
reduces the color moiré artifact, often resulting from such mixing.
The next modification improves the quality of interpolation in
smooth image areas. In such areas, the image noise influences the
gradient values significantly and this can lead to watercolor arti-
fact. At the same time, the simple bilinear interpolation does not
produce this artifact. So, lowering of the power in the denomina-
tor of the mixing formula enforces more mixing of vertical and
horizontal interpolation directions and makes the interpolation
closer to bilinear interpolation. In our algorithm, this power in the
denominator is lowered from 8 to 4 or 2, depending on the
smoothness of the area.
The result of the gradient interpolation is the interpolated green
component, and also the additional array storing the coordinates
of pixels that required the maximal gradient window size to de-
termine the interpolation direction. This array will be used further
to determine the "problem" image areas, where the direction of
the interpolation has been determined unstably.

3.1.3 Hybridization of gradient interpolation and NEDI
In our method of interpolation of a green component, we combine
results of NEDI and gradient interpolation in order to reduce the
artifacts of both approaches and to improve the speed of calcula-
tion (compared to NEDI alone), since NEDI will be now applied
only to a relatively small part of image pixels. To achieve this, we
use a special classification algorithm, which is applied to the re-
sulting image after gradient interpolation of green color. This
classification algorithm determines the mixing proportion be-
tween results of NEDI and gradient interpolation for each pixel.
The purpose of the classification algorithm is separation of pixels
onto 2 classes. The first class should include all the edges in the
image. The second class should include smooth image areas, areas
of high-frequency content (e.g. some fine repeating patterns), and
areas of fine texture (e.g. leaves, grass, etc.) The NEDI algorithm
will be used for interpolation of pixels from class 1. The gradient
interpolation will be applied for the pixels of class 2, since NEDI
will produce artifacts there.
Our classifier uses the following criteria to form the final deci-
sion:
1. The presence of details near the current pixel. This criterion

is evaluated using a simple linear filter approximating the
second derivative ((0, 1, 0), (1, -4, 1), (0, 1, 0)). This crite-
rion allows classifying the smooth areas in the image as pix-
els of class 2.

2. Ratio of high-frequency energy to low-frequency energy near
the current pixel. This criterion is evaluated using spectral
amplitude coefficients of a windowed 2D FFT (the window
size is set to 8x8 pixels). The energies of high-frequency and
low-frequency coefficients are calculated. The low frequen-
cies here are defined from 0 to 0.25 cycles per pixel. The
zero frequency is not considered since it corresponds to the
average block intensity and shouldn't influence the edge de-

tection). This criterion allows classifying areas with pre-
dominantly high-frequency content (fine repeating patterns)
to class 2 and classifying edges to class 1 (since edges con-
tain predominantly low-frequency content).

3. The complexity of spatial structure of the image near the cur-
rent pixel. This criterion is evaluated as follows. Firstly, the
8x8 block around the current pixel is translated into the
locally optimal binary palette (using few iterations of the K-
means clustering algorithm applied to pixel colors). Then, in
the resulting 2-color image, the number of coherent areas is
calculated (the 8-coherent areas are considered here, i.e. each
pixel has 8 neighbors). This criterion allows to classify areas
of simple structure (edges usually have only 2 coherent ar-
eas: 2 different sides of the edge) to the class 1, and classify
areas of fine texture (grass, leaves) to the class 1, because
latter usually have more than 2 coherent areas.

In the result of the classification, each pixel is assigned with a
"probability" of belonging to the class 1 or 2. This probability
determines the proportion of mixing of NEDI and gradient inter-
polation results (fig. 11-a).
Since the classification is performed before the NEDI algorithm,
we can perform NEDI interpolation only for pixels where the
corresponding probability is not zero (for further speed-up of the
algorithm we can raise this threshold from 0 to 0.3 without no-
ticeable loss of quality).

3.2 The Kimmel algorithm modification
After interpolation of a green color, we perform the interpolation
of red and blue colors using the Kimmel algorithm with several
modifications. The main modification is the use of adaptively
variable number of iterations.

3.2.1 Variable number of iterations
The standard implementation of Kimmel algorithm suggests us-
ing 3 iterations for correction of red and blue colors. We have
conducted experiments in order to find how the number of itera-
tions influences the visual quality and PSNR in different image
areas. The experiments have shown that with increase of the
number of iterations the suppression of color moiré improves
(since all the 3 color components are better synchronized), but at
the same time color saturation decreases in the places of color
transitions [11]. 3 iterations are usually acceptable for most im-
ages and produce best average PSNR. However the results can be
improved by adaptively varying the number of iterations.
The main task of the Kimmel algorithm is suppression of a color
moiré. The color moiré is caused by the aliasing of red and blue
color components and appears in areas where low sampling rate
of red/blue colors is not enough for capturing high spatial fre-
quencies. The idea of our method is to find such areas and in-
crease the number of Kimmel iterations in them. The search of
such areas is performed using 2 criteria.
The first criterion is the uncertainty of detection of interpolation
direction (stored in a special array as described in a paragraph
3.1.2).
The second criterion is the image area classifier similar to that
described in paragraph 3.1.3. The difference from the paragraph
3.1.3 is that the second criterion of the classifier is used reversely
(since we have to classify high-frequency regions as class 2 re-
gions), and the third criterion of the classifier is not used. In our
implementation of the algorithm, these 2 classifiers are calculated

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

simultaneously since they work on the same input data and have
many common steps.
As a result of this classifier, we obtain a probability for each
pixel to be belonging to the class 2. We call this probability array
the “problem map”, since it shows image areas, where color
moiré is likely to occur (fig. 11-b).
This “problem map” controls the number of iterations in the
Kimmel algorithm: in “problem-free” areas the number of itera-
tions can be low: 1…2. But in “problem areas” the number of
iterations can raise to 10…12.

a b

Fig 11. Pixel classification for switching of the interpo-
lation type (a), «problem map» (b). The source image

is on a fig. 4-a.

3.2.2 Extension of the gradient calculation window
For calculation of interpolation weights in the Kimmel algorithm
several directional gradients are evaluated. Each of gradients is
calculated as difference of 2 pixel values: Grad = |G[i, j] – G[k,
m]|
In our algorithm, we have modified the calculation of gradients by
averaging differences in a wider spatial window:
Grad = 8·|G[i, j] – G[k, m]| + |G[i+1, j] – G[k+1, m]| + |G[i–1 , j]
– G[k–1, m]| + |G[i, j+1] – G[k, m+1]| + |G[i, j–1] – G[k, m–1]|

This has slightly improved the resulting PSNR quality.
3.2.3 Half-recursive color update
In the original Kimmel algorithm, the calculation of the corrected
colors is based on one color array, while the corrected colors are
written into another color array. Then, at the next iteration, the
arrays are interchanged. In our algorithm, we write the corrected
pixel values into the same array, and they are used for interpola-
tion of next neighboring pixels. On odd iterations of the correc-
tion, the whole array is walked from left to right, from top to bot-
tom, and on even iterations – in the reverse order. This small
modification also improves the resulting PSNR.

3.3 Projection on a source color data
The Kimmel algorithm adjusts all 3 color components of the im-
age to reduce the color moiré. However the algorithm changes the
color values in all pixel positions, including those color values
originally given in the bayer pattern. It is evident that substitution
of the original color components from the bayer pattern into the
corresponding positions of the demosaiced image will improve
PSNR. It was found that the visual quality also improves after this
operation. Speaking in terms of alternating projections algorithm
[6], this operation is called “projection on the source data”.

In our algorithm, we use more complex model of projection on
the source data. The idea of the method is adjusting all the color
components in each pixel according to the local color model of
the image.
The local color model is constructed as follows. We try to ap-
proximate all the pixel colors from some local window around
the current pixel using a straight line in a 3-dimensional color
space. The colors of the window pixels are a cloud (in 3-
dimensional color space), and it is required to draw a straight line
that optimally approximates all these colors. In our algorithm, we
obtain this line approximately by connecting 2 points of the cloud
that are most distant from each other. We call vector between
these 2 points a “color direction vector”. It shows the dominant
direction of a color variation around the current pixel in the im-
age. For example, if the pixel lies close to the boundary between
black and white colors (including intermediate grayscale colors),
then the color direction vector has equal R, G, and B compo-
nents.
In our algorithm, we use a window of 3x3 pixels for search of a
color direction vector. After the vector is found, we calculate the
average distance of window pixels from the approximating line
(i.e. from the color direction vector). This distance can be con-
sidered as a measure of consistency of such 1-dimensional color
approximation model.
After the color direction vector is obtained, the substitution of the
source color data is performed according to the following rule:
for each pixel the substituted color component determines the
amount of pixel color shift, and the direction of the shift is de-
termined by the color direction vector. For example, if the color
direction vector is (100, 100, -100), and the value of the pixel is
(r=20, g=40, b=30), and the substituted source color component
is g=42, then the resulting shift of the pixel color will be (2, 2, -
2), and the resulting value of the pixel will be (22, 42, 28).
This simple principle requires some protection against situations
when color direction vector is approximately orthogonal to the
substituted color component, which can result in very high
changes of other color components. To implement such protec-
tion in out algorithm, we have imposed some limits on maximal
changes of the color components. The example for the case of a
green color substitution is demonstrated below:
Green = OriginalGreen;
if (CDV[Green]>eps)
{
 Amount = 1 – eps/CDV[Green] + GrayscaleMeasure;
 Red += (OriginalGreen – Green) * CDV[Red] /
 CDV[Green] * Amount;
 Bound(Red, –Limit, +Limit);
 Blue += (OriginalGreen – Green) * CDV[Blue] /
 CDV[Green] * Amount;
 Bound(Blue, –Limit, +Limit);
}
Here Red, Green, and Blue are the values of color components,
OriginalGreen is the source color component substituted from
the original bayer pattern, {CDV[Red], CDV[Green],
CDV[Blue]} is the color direction vector, Limit is the limit on
changes of color components (it can be calculated from the con-
sistence of the local color model).
The Amount variable softens the effect of substituted color com-
ponent on other color components of the current pixel. Its value
is calculated from 2 criteria:

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

1. The effect should be reduced when CDV vector is approxi-
mately orthogonal to the green color component (this crite-
rion is implemented by eps/CDV[Green] term).

2. The effect should be increased when the direction of CDV
vector is close to (1, 1, 1). This increases the coherence of
color components in grayscale images which increases the
quality of the result. At the same time it reduces the coher-
ence of color components is areas of transitions between col-
ors of different hue, which also increases the quality and re-
duces the “zipper effect”.

3.4 Iteration of the whole algorithm
For further improvement of the image quality we use the addi-
tional iteration of the whole algorithm. On this iteration the direc-
tional gradients (used for interpolation of a green component) are
calculated using the whole-resolution image, restored on the pre-
vious iteration. This significantly increases the quality of green
color interpolation, esp. in areas of high-frequency information.
On a first iteration, the direction of interpolation could have been
chosen erroneously due to aliasing. But after the projection on a
source color data, the lost high frequencies are partly restored,
and this helps to determine correct interpolation directions on a
second iteration of the algorithm.

4. RESULTS
We have conducted experiments to compare the proposed method
with several state-of-the-art algorithms. For comparison we have
used a set of test images widely spread in publications on image
processing and demosaicing.
The image quality has been measured using PSNR measure in
RGB space, and PSNR measure in CIEDE2000 space of ∆E00
color differences [9], taken between the original full-color image
and the demosaiced image (as discussed in section 2.4). The aver-
aged results across our test set are given in the table 1.

Method Average PSNR-
RGB

Average PSNR-
CIEDE2000

Bilinear 27.50 35.56
Kimmel 33.50 42.57
Aqua-2 34.63 42.99
Alternating Projections 35.24 42.76
Proposed method 37.10 44.36

Table 1. Average PSNR values across test images

PSNR values on each image separately are graphed on fig. 12.
The fig. 13 shows the example result of our algorithm applied to
the “Lighthouse” image. Other examples can be found on our
web-page [11].
PSNR measurements and visual assessment suggest that the pro-
posed algorithm outperforms all known to us demosaicing algo-
rithms. The computational complexity of our method is around 3
times higher than the complexity of Kimmel algorithm.

5. REFERNECES
[1] R.H. Hibbard, “Apparatus and method for adaptively
interpolating a full color image utilizing luminance gradients”,
U.S. Patent 5,382,976, January 1995.
[2] C.A. Laroche and M.A. Prescott, “Apparatus and method for
adaptively interpolating a full color image utilizing chrominance
gradients”, U.S. Patent 5,373,322, December 1994.
[3] R. Kimmel, “Demosaicing: image reconstruction from CCD
samples”, Proc. Trans. Image Processing, vol. 8, pp. 1221–1228,
1999.
[4] D.D. Muresan, “Review of Optimal Recovery”,
http://dsplab.ece.cornell.edu/papers/technical_reports/review_or.pdf
[5] D.D. Muresan, T.W. Parks, “Optimal Recovery Demo-
saicing“, IASTED Signal and Image Processing Conference (Ha-
waii 2002).
[6] B.K. Gunturk, et al. “Color Plane Interpolation using Alter-
nating Projections”, IEEE Trans. Image Processing, vol. 11, no.
9, pp. 997-1013, September 2002.
[7] X. Li, M.T. Orchard, “New Edge-Directed Interpolation”.
IEEE Trans. On Image Processing, Vol. 10, No. 10, October
2001.
[8] J.A. Leitao, M. Zhao and G. de Haan, “Content-adaptive
video up-scaling for high-definition displays”. IVCP 2003 Proc.
Vol. 5022, January 2003.
[9] M. R. Luo, G. Cui and B. Rigg, “The Development of the
CIE 2000 Colour Difference Formula: CIEDE2000”, Colour &
Imaging Institute, University of Derby, UK.
[10] A. Lukin, “Image Resampling Algorithms” (demo web-
page), http://audio.rightmark.org/lukin/graphics/resampling.htm
[11] A. Lukin, D. Kubasov, “Bayer pattern interpolation” (web-
page), http://audio.rightmark.org/lukin/graphics/demosaicing.rus.htm

About the authors
Alexey Lukin is a PhD student of a State University of Moscow,
faculty of Applied Mathematics and Computer Science
E-mail: lukin@graphics.cs.msu.su

Denis Kubasov graduate student of a State University of Moscow,
faculty of Applied Mathematics and Computer Science
E-mail: dkubasov@graphics.cs.msu.su

We would like to thank our university supervisors Dr. Y.M. Ba-
yakovskiy, head of our Graphics & Media Lab, and Dr. A.S. Kry-
lov, head of our joint research projects with SAIT (Samsung Ad-
vanced Institute of Technology). We also acknowledge Dr. D.S.
Vatolin’s introduction to the field of demosaicing.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

http://dsplab.ece.cornell.edu/papers/technical_reports/review_or.pdf
http://audio.rightmark.org/lukin/graphics/resampling.htm
http://audio.rightmark.org/lukin/graphics/demosaicing.rus.htm
mailto:lukin@graphics.cs.msu.su
mailto:dkubasov@graphics.cs.msu.su

Fig 12. PSNR-RGB values for each test image

Original image Bilinear interpolation Proposed method

Fig 13. Example of our algorithm working on a “Lighthouse” image

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

	INTRODUCTION
	REVIEW OF EXISTING METHODS
	Linear methods
	Independent interpolation of color planes
	Color ratios interpolation

	Adaptive methods
	Edge-adaptive methods
	Kimmel algorithm
	Interpolation of green color
	Interpolation of red and blue colors using the green color
	Correction stage

	Mathematical methods
	Optimal recovery
	Alternating Projections

	Algorithm quality evaluation

	THE PROPOSED ALGORITHM
	Green color interpolation
	NEDI
	Gradient interpolation
	Hybridization of gradient interpolation and NEDI

	The Kimmel algorithm modification
	Variable number of iterations
	Extension of the gradient calculation window
	Half-recursive color update

	Projection on a source color data
	Iteration of the whole algorithm

	RESULTS
	REFERNECES

